
VK3RWO Telemetry unit

Another article by VK3VS/VK3SMB

Table of Contents

The idea behind it...2

Electrical Components...2

Microprocessor..3

Voltage monitor..4

Current monitor..4

Temperature monitor..5

LCD Display...6

Cooling fan...6

Door switch..6

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 1 of 25

BCD Outputs..7

Understanding BCD...7

Communicating with the outside world..7

Connection options..9

Offsite Electrical Components..10

Repeater Control..10

Brief intro to the VK3VS Repeater controller...10

Program..11

Getting an average..11

Automatic Fan control..11

Changing parameters remotely...11

Failsafes...12

Receiving the data from the telemetry controller...13

Storing the data..13

Processing the data...14

Displaying the data for humans...14

Onsite display..14

Remote display..15

Summary..16

Appendix 1 – PICAXE code listing...17

Appendix 2 – Schematic..24

The idea behind it

When the idea came about to put VK3RWO on a remote site, I had to think about ways of
keeping tabs on it. There may be something commercially available however I would
imagine that it would be a something that fits all type approach, and given this is a hobby,
most likely cost prohibitive.

Basically I had to design this controller around the following items:

• Low cost,

• Low power,

• Customisable; and

• Communication with the outside world.

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 2 of 25

The following things had to be monitored/controlled

• Controlling of 3 repeaters,

• Monitoring/control of battery voltage,

• Monitoring/control of temperature,

• Monitoring of current; and

• Security of the site

Electrical Components

This controller is made up of several pieces. The interconnection of the equipment, and
other possibilities of connection will be shown later in this article.

Onsite, there is the controller PCB, and its associated sensors, a data modem and a radio.

Offsite, there is a radio, data modem, TTL – USB converter and a Raspberry Pi with
internet access

In a server room, somewhere in the ‘States, there is a server with a LAMP (Linux Apache
Mysql and Php) stack installed, which has http://vk3rwo.vklink.com.au pointed at it.

This is all the pieces that give us a nice front end for your viewing pleasure.

Microprocessor

As with a lot of my projects, I use the PICAXE micro controllers. I use these purely and
simply for ease of use, and being able to smash out a project with ease. Some will ask

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 3 of 25

http://vk3rwo.vklink.com.au/

why not the PIC??. It is simple, While I can program html, php, mysql, bash, C and cut my
teeth on MS-BASIC, I have not had the time to study the data-sheets and process how to
program in assembler. Now some of you will say, “Why not program the PIC in C?”. I
probably could, again if I had the time to sit down and study data-sheets and incorporate
PWM stacks, UART stacks, and all the other bits that are built into the firmware of the
PICAXE. The PICAXE have enough speed and functionality for all of my projects, without
getting down onto bit shifting type stuff. All PICAXE chips are programmed in PICAXE
BASIC, which is a language very similar to BASIC, with added commands for the extra
options available in a chip.

They were designed for students to get a grip on programming and interfacing to the real
world. There is massive amounts of official documentation, with 5 volumes now, and huge
amounts of info on the internet in the official and unofficial forums.

For this particular project, I have used the PICAXE 20X2. I have chosen this chip for the
simple fact it has a 256 byte RS232 buffer with a built in UART that does background
receive. What this means for the simple folk, is I can send data (from a data radio or
offsite!) to the chip, then it can finish what it is doing and then process what is in the buffer.
I don't have to interrupt the running program to deal with the RS232 data.

It has 17 usable pins, mostly bi-directional that are set up into 3 addresses (A, B, C), and
lastly, it also has a built in resonator running at 8Mhz that is reasonably accurate. As you
can see later, I can also send fire and forget RS232 data out of other pins to control other
devices.

Voltage monitor

The voltage monitor is a simple resistor voltage divider. Unless something goes horribly
wrong with the batteries and solar charger in the cabinet, the 15V limit I have aimed for
should be sufficient.

The PICAXE has several ADC channels available to use. One
has been used for monitoring the voltage. For ease of data
transmission, I have only used the 8 bit ADC. Using the 8 bit
ADC means there is 256 steps in the 0 to 5V rail, meaning we
have a resolution of 0.0195V. As I have used a resistor
divider for the voltage, the resolution becomes 0.0585V per
ADC step. More than enough resolution for an estimation of
how the batteries are holding up.

The ADC values are worked out as follows:

MeasuredVolt÷(
R1+R2

R2
)÷(

PICAXE supplyV
Total ADC steps

)=ADCValue

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 4 of 25

Illustration 1: Simple
Voltage divider

For example, 12.6V (A near full charged battery): 12.6÷(
33 kohm
11kohm

)÷(
5

256
)=215 ADC steps

The PICAXE reads this ADC value and stores it for use in the program.

The divider is wired across the batteries to get a voltage at the batteries.

Current monitor

The current monitor is a bit more
advanced. I found while shopping at
Jaycar one day that for under $10, they
had a little module designed for the
arduino system for measuring current.
There is bugger all of a data-sheet
available for the module alone, but there
is one for the IC on it. However, basically
I worked out that it runs on 5V, has a
range of .5V to 4.5V for +/- 30A and sits at 2.5V for 0A. So working this out for interfacing
to the PICAXE went something like this:

• 20% of the ADC steps aren't used, so we have 256×80%=205 steps

• Step 127 is 0A.

• Which leaves 204 steps to deal with. As we want plus and minus readings there is
102 steps either way.

◦ 127+102=229 steps=+30 A

◦ 127−102=25 steps=−30 A

So to work out the current, the following is used:

A÷(
30
102

)+127=ADC steps

and into practice:

20÷(
30
102

)+127=195 or a minus value: −20÷(
30
102

)+127=59

Again the PICAXE reads this and stores it in for use in the program.

The module is wired inline with the batteries. This is done so that we can see how much
goes in and out of the batteries. It is pointless installing it on the solar side, as it will only
ever show a recharge when the sun is up, and pointless on the radio side as it will only
ever show what the radios are drawing. This way we can keep tabs on the batteries
themselves.

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 5 of 25

Picture 1: Current module

Temperature monitor

Measuring the temperature with the LM335 doesn't have great resolution, but it has
enough for the job. It starts at 0 degrees Kelvin, and works its way up from there. (For
those who don't know 0 Kelvin is minus 273 degrees Celsius…).

Looking at the data-sheet, this device measures from -273 to +140
degrees C. the formula for working out its temperature with ADC gets a
little more confusing.. you convert it to K and then change it to an ADC.

(273.15+degC)÷(
5

256
×100)=ADC

So, a Cabinet temperature of 14 degrees C would equal:

(273.15+14)÷(
5

256
×100)=147

Once again, this is stored for the program to use later.

The sensor is mounted behind the radios, in the airflow, in free space. It requires a 2k
resistor from the 5V supply rail to the sensor pin and a ground. There is provision for
adjustment on the third pin, however as it is only and indication, it is not used.

LCD Display

An LCD display is NOT necessary for
this project, as it is remote equipment,
nobody stands there and stares at the
display. I incorporated it to give me a
real time show of the repeater status’
and what's going on inside the cabinet.
The LCD display only turns on when
the door is open to the cabinet.

The PICAXE is capable of controlling a number of LCD displays. It can use the old bit shift
display like the one Jaycar sells, or in this case, I have a number of AFMicro displays
laying around from a previous project. These displays accept RS232 data in a 115600
baud 8N1 format. The PICAXE is capable of this speed.

It is wired to the PICAXE via a PNP transistor. When the PICAXE senses the door has
been opened, it pulls the base of the PNP to ground via a 10k resistor and turns the
display on. It then sends the data via another pin with TTL RS232.

If you look hard enough on the internet, there is actually a pretty comprehensive data-
sheet for this device. You can move the cursor anywhere on the screen and display all
255 ASCII visible characters

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 6 of 25

Picture 2: LM335
Temp sensor

Picture 3: Google image of a display

Cooling fan

The cooling fan is controlled from the controller as well. It is simply an NPN transistor that
controls a P Channel FET. The program commands the fan to come on when any of the
repeaters are commanded to broadcast the news, or, if the controller senses the current
draw of the repeater has exceeded 5A for more than 1 minute continuously, or if the
temperature in the cabinet exceeds a preset value. The value has been set to just under
40 degrees, however this can be changed remotely which is discussed further in the
article.

The fan is mounted to an external vent on the cabinet. It draws air from inside the cabinet
and expels it.

Door switch

The door switch is actually a PTT switch off a PRM80 covert microphone. There is nothing
special here. It does however serve a couple of purposes:

1. Security. If the door changes state, the controller within Microseconds, stops what
its doing and sends a message via the telemetry that the cabinet has been opened,
this in turn sends me an email to say its open… I know the door has been opened
within a second of it being opened. So, even the flash would not be able to break
open the door and disconnect the batteries before the controller told someone there
was something wrong.

2. If the fan is running due to high temps and the door is opened, due to the negative
pressure in the cabinet from the fan, it actually makes it hard to open the door, so
as soon as it senses door movement, it shuts the fan off to get the door open; and

3. Serves as the switch for the LCD display. There is no point having the display
running if the door is shut.

BCD Outputs

My Repeater controllers are unique to the world. When I built them, I did not want DTMF
commands used, as so they can be copied by those with nothing better to do. I thought
about telemetry control to each controller, but that didn't allow for expansion easily, and
was one of those cases of putting ones eggs in one basket.

So I elected to give the repeater controllers BCD inputs, with each input serving a different
purpose. I chose 3 inputs, as this gave me 8 different options of repeater operation.

It also means that IF the telemetry controller dies, I can wander up to the site and manually
set the options with toggle switches and replicate which option I want to use. The repeater
controllers will keep operating without the telemetry unit, they just wont tell us anything.

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 7 of 25

Understanding BCD

BCD or Binary Coded Decimal, is simply counting in binary. Hence in the repeater
configuration, if I used inputs in normal use, I would have 3 functions, however, using
BCD, I get 8. Here’s how it works:

Input 1 Input 2 Input 3 Decimal Value Function (examples)

0 0 0 0 Repeater normal, No sleeping, No Link

1 0 0 1 Repeater normal, Sleeping allowed, no link

0 1 0 2 Repeater normal, No sleeping, Link Active

1 1 0 3 Repeater normal, Sleeping allowed, Link Active

0 0 1 4 TOT disabled, No sleeping, no link

1 0 1 5 Shutdown

0 1 1 6 TOT disabled, No Sleeping, Link Active

1 1 1 7 Shutdown

As you can see, function 5 and 7 are the same, as there is no point having a shutdown
repeater and an active link….

Communicating with the outside world

It is all fine and wonderful having all this information available on-site. But, I’m not going
for a 7km walk every day to look at it. The whole idea of this was to have serial data
getting off the site and down to my QTH to enable me to keep tabs on what is going on up
there.

As mentioned previously, the PICAXE 20X2 has a built in UART and buffer. This means I
can send the data over an RS232 connection. The LPID data radio and modem form the
really long RS232 cable we need to get the data off the hill. The controller for VK3RWO is
set up as follows:

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 8 of 25

Even though it appears complex, it is relatively simple. Shown later is another
configuration that could be used.

It is entirely possible to use a web server on the raspberry pi, and forward port 80 on your
router to your raspberry pi. The reasons I have elected to use a server is:

a) Security. I don't have to worry about the wrong port being open on my router

b) automatic backups as part of my plan

c) I already have a server with a LAMP stack for the VKLink project.

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 9 of 25

Illustration 2: Layout of the telemetry for VK3RWO

Connection options

Whilst I have used LPID data radios as my preferred method of getting the bytes of data
off the site, two other methods could be used, with no software change.

There is a downside to this. Your Pi is not on your network, and if you have to login to
make changes, you either have to do a reverse SSH tunnel, OR spend money on a
network provider who give a public IP address to your 4G device. As you will see later in
the article, you will have trouble controlling the telemetry controller.

If I had the line of site to the repeater, This would be my preferred method. The raspberry
Pi could take over most of the role of the telemetry controller, and just use the
temperature, voltage, current and door switch readings from the telemetry controller, and
let the pi control everything else.

You can access all ports of the pi from your internal network. If the Pi was to take control
of the repeater boards, you could program much more without going up the hill. As so long
as you didn't kill the pi and lock it up (any sensible person would have a watchdog
installed), you could change anything, how often it reports, etc.

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 10 of 25

Illustration 3: Connection via 4G

Illustration 4: 5.8Ghz connection. This would be my preferred method

Offsite Electrical Components

As seen from the Illustrations above, there are components onsite, which we have gone
through, and there are components offsite. In the setup running on VK3RWO, the offsite
components consist of, the data radio and modem, the TTL to USB converter and the
raspberry pi.

The Data radio and modem receive the RS232 data and convert it to 2400 baud 8 bit, No
parity and 1 stop bit.

This data is then shoved into a CP2102 TTL to USB converter, which is installed as
/dev/ttyUSB0 on the raspberry pi.

Repeater Control

As mentioned in BCD Outputs, each repeater controller has 3 BCD inputs on their board.
These, at the moment are programmed exactly the same way between all the repeaters.

This however, can change as I see other options etc in the firmware.

Shown already is the RS232 data path for getting data from the repeater site to the outside
world. The reverse is also very true. Data can be sent back. Exactly how is shown further
down this article.

Brief intro to the VK3VS Repeater controller

I created the VK3VS repeater controller as there wasn't anything out there that did exactly
what I wanted. An article will be written on these controllers later, but for now here is a list
of items I wanted in my repeaters:

• High impedance audio paths – meaning I could add link radios etc without the levels
needing adjustment

• Controlling of the audio path between main and links

• Custom Roger Beeps so that my repeaters can be bought out of the mud during
ducting

◦ with that the roger beep changes depending on what mode its in.

• Dual mode squelches – meaning CTCSS and COR squelches could be used (for
example in VK3RWO 2Mx, it has both available. CTCSS will hear you into the
noise floor, COR will only hear you if your signal is stronger than 2uV into the
repeater).

• Ability to turn the TOT off for news broadcasts

• A controlling ability that doesn't use DTMF to do so

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 11 of 25

• Being able to shut the repeater down remotely

• Being able to power down the exciter and PA when its not being used; and

• The big one. The ability for the repeater to go to sleep. What I mean for it to sleep
is, it turns off for 2 seconds, powers up for 1 second and listens, then repeats. This
drops the current consumption down to a 1/3, vastly improving battery life when it is
sitting there idle.

As you can see all that is not in any repeater controller out there in a Ham’s budget.

Program

The program that does all the onsite processing is written in PICAXE BASIC. Appendix 1
has a complete listing of the program, along with comments explaining what is going on.

There are four sections here that need explaining a little further.

Getting an average

As I don't want the telemetry controller sending data every 30 seconds, some code has
been written into the controller that it grabs a reading every 30 seconds, stores it, then
does that another 9 times (5 minutes), averages it out, then sends it down as part of the 24
byte packet. This is how the averages are shown on the graphs at
http://vk3rwo.vklink.com.au

Automatic Fan control

The Fan in the cabinet is controlled in 4 ways:

1. Off when the door is open.

2. On when the temperature exceeds the value set in eeprom address 6

3. On whenever a repeater has the TOT disabled (getting ready for a news broadcast);
and

4. I can command it via RS232 data to be on (expecting a hot day or similar)

There is no provision to turn the fan off if the controller decides it needs to be on. You can
command it to turn off, but the controller will override it next time it reads the temperatures
and status’s

Changing parameters remotely

As stated, the data goes two ways. the first 8 bytes in the PICAXE eeprom memory store
the repeater BCD status’s, the fan status, the high temp trigger value and the low voltage
value. By sending a 6 byte string to the telemetry controller after the preamble, it adjusts

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 12 of 25

the eeprom value and the program then deals with it. The string goes like this:

Data XX XX XX XX 10 13

Description ID From ID To Eeprom
address

Value to
change to

CR LF

Each controller has an ID. I have the one at VK3RWO as ID 2, ID 3 is reserved for
VK3RWD. Further improvements on the controller will see it store and forward info from
another controller and forward it to the internet. For now:

ID from is 1 (The raspberry pi at my QTH)

ID to is 2 (The repeater is ID 2)

The eeprom addresses are as follows:

Address Description

01 ID of the Telemetry controller

02 BCD value for repeater #1 and #3

03 BCD value for repeater #2

04 Error status, 255 OK, 1 low voltage, 2 high temps

05 Fan control status. 255 for off, 1 for on, 3 for forced on

06 Fan cut in temp. 15 to 255 value

07 Low voltage cutout temp. 15 to 255 value

10 and 13 are ASCII CR and LF. These are used by most programs to signify the end of a
line and that “I” need to do something with the string. The PICAXE actually discards them
when it receives them.

Fail-safes

The telemetry has the following fail-safes installed:

• Low voltage cutout. If the voltage drops below the ADC value set in eeprom
location 07, the software turns both repeaters off until such time as the voltage
increases.

• High temp fan. If the temperature goes above the ADC value set in eeprom
location 06, the fan is turned on until the temperature drops below the value.

• High temp cutout. The high temp cutout is hard coded to ADC value 170, or 58.9

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 13 of 25

degrees C in our readable language. If the temp goes above this, the repeaters are
all switched off and the fan comes on. I have yet to see this in action as the cabinet
of VK3RWO has never exceeded 48 degrees. I did produce this by aiming a pain
removal heat gun into the cabinet at the sensor.

• Door warning. If the door opens, the controller drops what its doing and sends an
alert that the door is open.

As I think of more things, the firmware will improve and change. This is a pretty
impressive list for a device built from scrap.

Receiving the data from the telemetry controller

At this point everything right up to the TTL – USB converter has been explained. This
converter does nothing to the data, only gives it a USB hole for the data to be delivered to
the Raspberry Pi.

Once in to the Raspberry Pi, a small bash script has been written to capture the data
coming in from the serial port (/dev/ttyUSB0) and send it to the vklink.com.au server.

The program listing:
!/bin/bash
stty raw -F /dev/ttyUSB0 2400 -echo > /dev/null 2>&1
cat /dev/ttyUSB0 | while read serin ; do
array=$(echo $serin | xxd -p)
echo $array
curl "http://vk3rwo.vklink.com.au/update.php?values=$array" -k >/dev/null 2>&1
done

This program is called at reboot via crontab and runs in the background. A sample crontab
entry would look like this:
@reboot chmod 777 /dev/ttyUSB0 && /home/pi/remoteser.sh > /dev/null 2>&1

The file /home/pi/remoteser.sh would have to be made executable by running the
command:
chmod +x /home/pi/remoteser.sh

Storing the data

Once the remoteser.sh program has grabbed a chunk of data, it calls the URL update.php
on the vklink.com.au server. This program simply grabs the array, splits it up into 1 byte
segments and shoves it into a mysql database.

A sample php file is here. The database logins are removed. This is something you will
need to work out:

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 14 of 25

<?php
$values=$_GET[values];

$values = strstr($values, '7575');
$values = str_replace("75757575757575", "", $values);
$values = str_split($values, 2);
$now = time();

include 'sqlserver.php';
mysql_connect(localhost,$username,$password);

@mysql_select_db($database) or die("Unable to select database");

$hours24 = $now - 86500;

mysql_query("DELETE FROM `rptstat` WHERE `timestamp` < '$hours24';");

if ($values[12] && $values[14]){

mysql_query("INSERT INTO `rptstat` (`id`, `timestamp`, `idf`, `rptid`,
`rpt13sw`, `rpt2sw`, `fault`, `fan`, `hightemp`, `lowvolt`, `avolt`, `acur`,
`atemp`, `volt`, `cur`, `temp`, `door`) VALUES (NULL, '$now', '$values[0]',
'$values[1]', '$values[2]', '$values[3]', '$values[4]', '$values[5]',
'$values[6]', '$values[7]', '$values[8]', '$values[9]', '$values[10]',
'$values[11]', '$values[12]', '$values[13]', '$values[14]');");

}
mysql_close();

?>

Processing the data

There is not a lot of processing the data that goes on. The http://vk3rwo.vklink.com.au
web page simply brings the data stored in the database out into a webpage. The fancy
CSS encoding of the vklink server makes it look pretty.

Displaying the data for humans

Displaying the data for us to read is done in similar fashions at both the repeater site, and
online. The main difference is, the PICAXE cannot deal with decimal points. For example,
if we had the equation: 5.7×8 , which we know calculator can work that out to 45.6.
PHP can work that out. However that formula would be illegal in the PICAXE BASIC
interpreter, so we would re-wite the formula to 57×8÷10 which still gives the answer of
45.6 (even though the PICAXE would interpret that as 46), and is quite acceptable in the
program.

Onsite display

The onsite display is a simple 16 x 2 LCD. The program on the PICAXE runs the following
formulas over the ADC data, splits the answer down to single ASCII characters and stores
them individually. Refer to the appropriate sections above for comparison

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 15 of 25

http://vk3rwo.vklink.com.au/

Voltage: Humanreadable=ADC×195÷10×3÷100

Current: It runs 2 different formulas, depending if the ADC value is greater than 127 or not:
Human readable=ADC−127×300÷100 or Humanreadable=127−ADC×300÷100

Temperature: Humanreadable=ADC×195÷10−2732

I did forget to mention that PICAXE mathematics does not follow BODMAS (or PEDMAS
depending on where (and when) you went to school). It is strictly left to right.

The display also gives a Binary representation of the repeater status’s

Remote display

The remote display, or website, reads everything out of a database, applies the simple
math and adds some prettys to it. Without giving the entire PHP code out to the masses,
here is bits of the code to get an idea:
current_volt = hexdec(mysql_result($query,0,"volt"));
$current_volt = round(0.01953 * $current_volt * 3,2);

$current_temp = hexdec(mysql_result($query,0,"temp"));
$current_temp = round((0.01953 * $current_temp * 100) - 273.15,1);

$current_current = hexdec(mysql_result($query,0,"cur"));
if ($current_current > 127)

{$current_current = round(($current_current - 127)* 30/100,2);}
else

{$current_current = 0 - (round((127 - $current_current) * 30/100,2));}

The graphs are created with php_plot. The data has to be put in an array, and then the
php_plot function is called with the array:
<?php

//Include the code
require_once 'phplot/phplot.php';
require_once 'phplot/contrib/prune_labels.php';

//Define the object
$plot = new PHPlot(350,150);

//Define some data
include 'sqlserver.php';

mysql_connect('localhost',$username,$password);
@mysql_select_db($database) or die("Unable to select database2");

$graphing=mysql_query("SELECT * FROM `rptstat` WHERE `rptid` = '02' ORDER BY
`timestamp` DESC LIMIT 288;");
$num=mysql_numrows($graphing);
mysql_close();

$i= ($num - 1);
while ($i>0){
$voltage=mysql_result($graphing,$i,"avolt");

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 16 of 25

$volt = hexdec($voltage);
$volt = round(0.01953 * $volt * 3,2);
$time=mysql_result($graphing,$i,"timestamp");
$readable = date('H:i',$time);

if($volt > 11 && $volt < 15){
$volt_data[]=array($time,$volt);}
$i--;
}

prune_labels($volt_data, 20);

$plot->SetDataValues($volt_data);

//Turn off X axis ticks and labels because they get in the way:
$plot->SetXTickLabelPos('none');
$plot->SetXTickPos('none');
//$plot->SetXDataLabelPos('none');
$plot->SetXLabelAngle(90);
$plot->SetXLabelType('time', '%H');
//Set titles
$plot->SetYTitle('Volt');
$plot->SetXTitle('Hour');
//Draw it
$graph=$plot->DrawGraph();
?>

Summary

And that is how the Telemetry controller is put together. Its a big bit of mis-match of
everything to get the job done. I had all these bits laying around. Whilst there is several
different pieces of technology and coding being used, the standard RS232 format of data
between them makes it all work very effectively.

Future plans include putting this controller on a second site, with a second ID, and the
hope is that the second site will talk to the first and then the first will tell my QTH all about
it.

‘73, Matt, VK3VS/VK3SMB.

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 17 of 25

Appendix 1 – PICAXE code listing
#picaxe 20x2
setfreq m16
'Control board for multiple repeater sites

'Set inputs and outputs
let dirsb = %10001110
let dirsc = %00111111

let pinsb = 0
let pinsc = 0

'Serial background recieve setup
hsersetup B2400_16,%1

'set adc up
let adcsetup = %10001000010
symbol temp = 1
symbol volt = 6
symbol curr = 10

symbol door = pinc.6
symbol fan = C.5
symbol lcd = B.7
symbol lcddata = C.4

symbol usebit = b0
symbol usebit2 = b1
symbol usebit3 = b2
symbol usebit4 = b3
symbol useword = w2
symbol errorflag = b6
symbol ownnumber = b7
symbol counter = b54
symbol smallcount = b55
symbol timer_1 = w26
symbol voltones = b51
symbol voltdec = b50
symbol currones = b49
symbol currdec = b48
symbol currdir = b45
symbol tempones = b47
symbol tempdec = b46
symbol norepeat = b44

eeprom 0, (3,2,4,4,255,255,160,196)
eeprom 14, (255,10,13,4,4)

start:
read 1, ownnumber
gosub zeroall
gosub readins
gosub zeroall
gosub setouts
pause 129
let timer_1 = timer_1 + 1
let counter = timer_1 / 300 'will be 600

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 18 of 25

let smallcount = timer_1 // 300 'same
if smallcount = 0 then

gosub readadcs
end if
if counter = 10 then

gosub writeflags
end if

if hserinflag = 1 then
gosub zeroall
gosub rxdata

end if

goto start
end

rxdata:
'hsersetup B2400_8, 0
let hserptr = 0
for ptr = 0 to 50

let usebit = @ptr
if usebit <> "u" then exit

next ptr
if @ptr > 9 then goto finishrx
if @ptr = ownnumber then goto finishrx
if @ptr > 3 then

put ptr, 3
end if
ptr = ptr + 1
if @ptr = ownnumber then goto takevalues
pause 500
for ptr = 0 to 30

let usebit = @ptr
hserout 0, (usebit)
if usebit = 13 then goto finishrx

next ptr
pause 100
goto finishrx

takevalues:
ptr = ptr + 1
usebit = @ptrinc
usebit2 = @ptrinc
if usebit > 1 and usebit < 8 then

write usebit, usebit2
if usebit < 4 then

usebit = usebit + 15
write usebit, usebit2

end if
let ptr = 0
let hserptr = 0
let hserinflag = 0

end if
gosub zeroall
gosub sendinfo

finishrx:
let ptr = 0
let hserptr = 0
let hserinflag = 0
'hsersetup B2400_8,%1

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 19 of 25

return

writeflags:
useword = 0
for usebit = 200 to 209

read usebit,usebit2
let useword = useword + usebit2

next usebit
let usebit2 = useword / 10
write 8,usebit2

useword = 0
for usebit = 210 to 219

read usebit,usebit2
let useword = useword + usebit2

next usebit
let usebit2 = useword / 10
write 9,usebit2

useword = 0
for usebit = 220 to 229

read usebit,usebit2
let useword = useword + usebit2

next usebit
let usebit2 = useword / 10
write 10,usebit2

gosub sendinfo

'exit'do a serial out here
let timer_1 = 0

return

validateusebit:
if usebit < 14 then

usebit = 14
end if
return

sendinfo:
gosub zeroall
pause 100
hserout 0, ("uuuuuuu")
for usebit = 0 to 128

read usebit,usebit2
hserout 0 ,(usebit2)
if usebit2 = 13 then exit

next usebit
pause 100
return

readins:
' read voltage
readadc volt,usebit
gosub validateusebit
write 11,usebit
useword = usebit * 195 / 10 * 3 / 100
usebit2 = useword / 10
voltones = usebit2
usebit2 = useword // 10

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 20 of 25

voltdec = usebit2
read 7, usebit2
' if voltage is too low....
if usebit2 > usebit then

write 2,2,2,1
errorflag = 1

else
read 17, usebit3
read 2, usebit4
if usebit3 <> usebit4 AND errorflag < 1 then

write 2, usebit3
end if
read 18, usebit3
read 3, usebit4
if usebit3 <> usebit4 AND errorflag < 1 then

write 3, usebit3
end if
write 4, 255
errorflag = 0

end if

' read the current
readadc curr,usebit
gosub validateusebit
write 12,usebit
if usebit >127 then

useword = usebit - 127 * 300 / 100
usebit2 = useword / 10
currones = usebit2
usebit2 = useword // 10
currdec = usebit2
currdir = 1

else
useword = 127 - usebit * 300 / 100
usebit2 = useword / 10
currones = usebit2
usebit2 = useword // 10
currdec = usebit2
currdir = 0

end if

' read the temp
readadc temp,usebit
gosub validateusebit
write 13,usebit
if usebit > 139 then

useword = usebit * 195 / 10 - 2732
usebit2 = useword / 10
tempones = usebit2
usebit2 = useword // 10
tempdec = usebit2

end if
read 6, usebit2
usebit3 = usebit2 -1

'deal with high temps.
select case usebit
case 0 to usebit3 'no fan

read 5, usebit
if usebit <> 3 and smallcount = 0 then

write 5,255

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 21 of 25

end if
read 2, usebit, usebit2
if usebit = 14 or usebit = 134 or usebit = 142 or usebit = 6 or usebit2 =

14 or usebit2 = 6 then
write 5,1

end if
read 17, usebit3
read 2, usebit4
if usebit3 <> usebit4 AND errorflag < 1 then

write 2, usebit3
end if
read 18, usebit3
read 3, usebit4
if usebit3 <> usebit4 AND errorflag < 1 then

write 3, usebit3
write 4, 255
end if

case usebit2 to 169 'fan on
write 5,1
read 17, usebit3
read 2, usebit4
if usebit3 <> usebit4 AND errorflag < 1 then

write 2, usebit3
end if
read 18, usebit3
read 3, usebit4
if usebit3 <> usebit4 AND errorflag < 1 then

write 3, usebit3
write 4, 255

end if
case 170 to 255 'fan on and radios off

let errorflag = 2
write 2,2,2,2,1

end select

' Read door switch
read 14,usebit
if usebit = 255 and door = 1 then

write 14, 1
gosub sendinfo

end if
if usebit = 1 and door = 0 then

write 14,255
gosub sendinfo

end if

return

zeroall:
let w0 = 0
let w1 = 0
let w2 = 0
return

setouts:
read 2,usebit,usebit2
let pinsb = usebit AND 14
let pinsc = usebit2 AND 14
if usebit > 14 then

let pinsa = 1
else

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 22 of 25

let pinsa = 0
end if
read 5, usebit
if usebit < 255 then

high fan
else

low fan
end if
read 14,usebit
if usebit = 255 then

low lcd
serout lcddata, T19200_16,(17,22)
gosub lcddisplay

else
high lcd

end if

return

readadcs:
readadc volt,usebit
let usebit2 = counter + 199
gosub validateusebit
write usebit2,usebit

readadc curr,usebit
let usebit2 = counter + 209
gosub validateusebit
write usebit2,usebit

readadc temp,usebit
let usebit2 = counter + 219
gosub validateusebit
write usebit2,usebit

return

lcddisplay:
serout lcddata, T19200_16, (128,#b51,".",#b50,"v")
if b45 = 1 then

b45 = 43
else

b45 = 45
end if
serout lcddata, T19200_16, (133,b45,#b49,".",#b48,"A ")
serout lcddata, T19200_16, (139,#b47,".",#b46,"c")
read 2,usebit,usebit2
if usebit > 15 then

usebit3 = 128
usebit = usebit - 128

end if
serout lcddata, T19200_16, (148," ")
serout lcddata, T19200_16, (148,"1:")
do

usebit = usebit / 2
usebit4 = usebit // 2
serout lcddata, T19200_16, (#usebit4)

loop until usebit = 1
serout lcddata, T19200_16, (154,"2:")
do

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 23 of 25

usebit2 = usebit2 / 2
usebit4 = usebit2 // 2
serout lcddata, T19200_16, (#usebit4)

loop until usebit2 = 1
if usebit3 = 128 then

usebit3 = 1
else

usebit3 = 0
end if
serout lcddata, T19200_16, (160,"3:",#usebit3)

return

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 24 of 25

Appendix 2 – Schematic

Good enough representation of what I did.

/home/matt/Documents/NEVARC/articles/Telem Controller/Telem controller.odt 25 of 25

	The idea behind it
	Electrical Components
	Microprocessor
	Voltage monitor
	Current monitor
	Temperature monitor
	LCD Display
	Cooling fan
	Door switch
	BCD Outputs
	Understanding BCD

	Communicating with the outside world
	Connection options

	Offsite Electrical Components
	Repeater Control
	Brief intro to the VK3VS Repeater controller

	Program
	Getting an average
	Automatic Fan control
	Changing parameters remotely
	Fail-safes

	Receiving the data from the telemetry controller
	Storing the data
	Processing the data
	Displaying the data for humans
	Onsite display
	Remote display

	Summary
	Appendix 1 – PICAXE code listing
	Appendix 2 – Schematic

